

Smallcombe SH, Patt SL, Keifer PA (1995) J Magn Reson Ser A 117:295 Pasch H, Trathnigg B (2013) Multidimensional HPLC of polymers. Wheeler LM, Willis J (1993) Appl Spectrosc 47:1128 Yohannes G, Jussila M, Hartonen K, Riekola M (2011) J Chromatogr A 1218:4104īasile F, Kassalainen G, Williams K (2005) Anal Chem 77:3008 Podzimek S (2011) Light scattering, exclusion chromatography and asymmetric flow field flow fractionation. Janca J (2008) Microthermal field flow fractionation: Analysis of synthetic, natural, and biological macromolecules and particles. Gigault J, Hackley V (2013) Anal Bioanal Chem 405:6251 Liu J, Yu S, Yin Y, Chao J (2012) Trends Anal Chem 33:95 Ulrich A, Losert S, Bendixen N, Al-Kattan A, Hegendorfer H, Nowack B (2012) J Anal Atom Spectrom 27:1120 Von der Kammer F, Legros S, Hoffmann T, Larsen EH, Loeschner K (2011) Trends Anal Chem 30:425 Lee D, Williams SKR (2010) J Chromatogr A 1217:1667 Williams K, Benincasa A (2000) Field-flow fractionation analysis of polymers and rubbers. Kassalainen G, Williams K (2003) J Chromatogr A 988:285 Yohannes G, Holappa S, Wiedmer SK, Andersson T, Tenhu H, Riekkola M-L (2005) Anal Chim Acta 542:222 Wittgren B, Wahlund K, Helene Derand H, Wesslen B (1996) Macromolecules 29:268 Runyon JR, Williams SKR (2011) J Chromatogr A 1218:6774 Van Batten C, Hoyos M, Martin M (1997) Chromatographia 45:121 Mes EPC, de Jonge H, Klein T, Welz RR, Gillespie DT (2007) J Chromatogr A 1154:319ĭammert R, Jussila M, Vastamäki P, Riekkola ML, Sundholm F (1997) Polymer 38:6273 Otte T, Klein T, Brüll R, Macko T, Pasch H (2011) J Chromatogr A 1218:4240 Otte T, Pasch H, Macko T, Brüll R, Stadler FJ, Kaschta J, Becker F, Buback M (2011) J Chromatogr A 1218:4257 Otte T, Brüll R, Macko T, Pasch H, Klein T (2010) J Chromatogr A 1217:722 Vastamaki P, Jussibi M, Riekkola M (2005) Analyst 130:427 Myeong M, Hansun K, Ilyong P (1997) Anal Chem 69:1436 Rolland-Sabaté A, Guilois S, Jaillais B, Colonna P (2011) Anal Bioanal Chem 399:1493 Rojas CC, Wahlund KG, Bergenståhl B, Nilsson L (2008) Biomacromolecules 9:1684 Van Bruijnsvoort M, Wahlund KG, Nilsson G, Kok WT (2001) J Chromatogr A 925:171 Chromatogr Sci Ser Vol 39, Marcel Dekker, NYīenincasa A, Giddings J (1997) J Microcolumn Sep 9:479 Janca J (1988) Field-flow fractionation: analysis of macromolecules and particles. Schimpf M, Caldwell K, Giddings J (2000) Field-flow fractionation handbook. Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Williams RSK (2008) Prog Polym Sci 34:351–368ĭean L, Williams K (2005) 56th Pittsburgh conference on analytical chemistry and applied spectroscopy. Liu Y, Radke W, Pasch H (2006) Macromolecules 39:2004 Liu Y, Radke W, Pasch H (2005) Macromolecules 38:7476 Finally, analysis of polymer nanocomposites by asymmetric flow field-flow fractionation (AF4)–FTIR is presented. Advanced detector combinations are discussed, most prominently the very recently developed coupling to 1H NMR. Examples are given of the analysis of molar mass distribution, chemical composition, and microstructure. In addition to the fractionations themselves, various detector setups are discussed to show that different polymer distributions require different experimental procedures. When appropriate, results from column-based fractionations are compared with those from FFF fractionations to highlight the specific merits and challenges of each method. It is demonstrated that some of the limitations of column-based chromatography can be overcome by FFF. This article reviews the latest developments in field-flow fractionation of complex polymers. Finally, the separation of very polar polymers may be a challenge because such polymers interact very strongly with the stationary phase, causing irreversible adsorption or other negative effects. Another limitation of all column-based methods is that the samples must be filtered before analysis and shear degradation of large macromolecules may be caused by the stationary phase and/or the column frits. The most common polymer fractionation method, SEC, has its limitations when polymers with very high molar masses or complex structures must be analysed. Field-flow fractionation (FFF) is a powerful alternative to column-based polymer fractionation methods such as size-exclusion chromatography (SEC) or interaction chromatography (IC).
